Experimental and Computational Micro-Characterization Techniques in Wood Mechanics –

COST Action FP0802

Nov 2008 - Nov 2012
Main/ primary objectives

Increased understanding of wood microstructure and micromechanics

- by exploring and evaluating emerging techniques in the fields of physics, chemistry, materials and computer science

- in order to provide a strong basis for the development of innovative wood-based products in the future and for enhancing the use of the natural resource wood.
WG1 – Wood microstructure
Leader: L. Thygesen (DK), Deputy: S. Tschegg (AT)

Topics: molecular structure of cell wall (incl. bonds), molecular origin of time and moisture dependence of mechanical behaviour

Methods: microscopic and spectroscopic methods, X-ray techniques; wood modification and mechanical treatment

Deliverables: deepened understanding of microstructural (molecular) origin of mechanical behaviour, explanatory models

- Molecular structure of cellulose *(Chaplin 07)*
- Bleached spruce fibre *(Daniel et al. 07)*
- Distribution of wood polymers *(Fahlen & Salmén 05)*
WG2 — (Hygro-)mechanical properties
Leader: M. Eder (GE), Deputy: O. Arnould (FR)

Topics: (micro)structure function relationships, hygro-thermo-mechanical properties of cell wall and its components, in-situ tests

Methods: micro-tensile testing, DMA, nano-indentation, SAM, NMR, Dynamic Vapour Sorption

Deliverables: hygro-thermo-mechanical properties of wood across several length scales under different environmental conditions

Micro-tensile testing stage and fibre fracture zone *(Eder et al. 07)*

Nano-indents in wood cell wall *(Jäger 06)*

NMR images of moisture distribution *(Almeida et al. 08)*

Initial state before pressure application

270 minutes of drainage
WG3 – Modelling of the material behaviour
Leader: K. Gamstedt (SE), Deputy: M. Jarvis (UK)

Topics: multiscale approaches, hygro-thermo-mechanical couplings, inverse parameter identification, virtual testing

Methods: finite element simulations, homogenisation techniques, composite micromechanics, molecular dynamics

Deliverables: predictive integrated computer models for hygro-thermo-mechanical behaviour

Molecular dynamics simulation of simultaneous drying and shearing *(Navi et al. 02)*

Deformation at compressive loading in R-direction *(Ransgri et al. 04)*

Multiscale model for wood *(Hofstetter et al. 05)*
<table>
<thead>
<tr>
<th>Signatures</th>
<th>MC members</th>
</tr>
</thead>
</table>
| Austria | Karin HOFSTETTER
 | Stefanie TSCHEGG |
| Denmark | Staffan SVENSSON
 | Lisbeth THYGESEN |
| Finland | Ritva SERIMAA
 | Pekka SARANPÄÄ |
| France | Joseph GRIL
 | Patrick PERRE |
| Germany | Michaele EDER
 | Uwe SCHMITT |
| Hungary | Levente CSOKA
 | Ilona PESZLEN |
| Italy | Marco FIORAVANTI |
| Lithuania | A. BALTRUSAITIS
 | A. LAURINAVICIUS |
| | Intention | MC members |
| Netherlands| Wolfgang GARD
 | Andre JORISSON |
| Norway | Geir VESTOL
 | Jan BRAMMING |
| Poland | Wieslaw OLEK
 | Edward ROSZYK |
| Portugal | Jos LOPES MORAIS |
| Serbia | Ksenija RADOTIC |
| Spain | Teresa CUBERES |
| Sweden | Kristofer GAMSTEDT
 | Lennart SALMEN |
| Switzerland| Parviz NAVI
 | Peter NIEMZ |
| Turkey | Ibrahim TUMEN |
| United Kingdom | Michael JARVIS
 | Callum HILL |
Further information

- **Action webpage:** http://cost-fp0802.tuwien.ac.at

- **Action Chair:** Karin Hofstetter
 (karin.hofstetter@tuwien.ac.at)

- **Action Vice-Chair:** Lennart Salmén
 (lennart.salmen@stfi.se)

- **COST Science Officer:** Melae Langbein
 (mlangbein@cost.esf.org)