Time-dependent mechanical behaviour of wood and implication for painted panels

Joseph GRIL (1), Julien COLMARS (1), Paola MAZZANTI (2)
(1) LMGC, Univ. Montpellier 2 + CNRS, France
(2) DEI STAF, Univ. Florence, Italy

Content:
- Introduction / Explaining the present condition
- Compression set and cupping of painted panels
- Modelling of compression set
- Conclusions / research needs
Introduction
Aims and approach

• Aim = find the optimal conservation conditions for wooden artworks
• Approach = produce mechanical models able to simulate the consequences of any action
• Models can
 (1) explain the present condition of an artwork
 (2) describe its present behaviour
 (3) predict the consequence of future conditions and/or actions
• A model doing both (1) and (2) is more convincing for (3)
• In panel paintings:
 (1) = permanent curvatures, cracks, patterns of craquelures
 (2) = reaction to frame, to microclimate
 (3) = change of frame or HT control, risk assessment (climatic accident, transportation…)
• Use of models can be
 - specific to a given artwork
 - general: assess conservation procedures, microclimate requirements...
Introduction / Explaining the present condition

The bent shape

- max deflection 11 mm
- Double curvature typical of a panel restrained on 4 edges, partially avoided by the crack

Shadow moiré observation of the surface topography
Introduction / Explaining the present condition

Double curvature & crack

- In case of Mona Lisa panel
 - cupping was restrained on upper and lower edges
 - double curvature
 - radial crack started from upper edge
Craquelure patterns in the paint layer (E. Ravaud 2006)

- quadrangular
- vertical
- inclined
- horizontal
Explaining the present shape
The typical deformation of painted panel

- Why do all unrestrained painted panels bent the same way, whatever the ring structure?
Compression set and cupping of painted panels

hygroelastic viewpoint

- panel = multi-layer
- in each layer:
 - elastic spring $\varepsilon^e = J_e \sigma$
 - expansion $\varepsilon^h = \alpha \cdot \Delta h$
- gradients along thickness
 - of moisture h
 - of properties α, J_e
Compression set and cupping of painted panels

hygroelastic viewpoint

- response to a step of RH change
 - short term: independent on ring structure (moisture gradient)
 - long term: ring orientation dominates (expansion ratio gradient)
- fully reversible

![Diagram showing pith orientation and RH changes](image)
Compression set and cupping of painted panels
Mechano-sorptive effect

干
湿
干
湿

\(h = h_{\text{min}} \leftrightarrow h_{\text{max}} \)

观察到
“计算得到”

CORRECTED CREEP

\(\varepsilon - \varepsilon^h \)

LOGARITHM OF TIME

\(h = h_{\text{max}} \)

\(h = h_{\text{min}} \)
Compression set and cupping of painted panels

hygroviscoelastic viewpoint

- 2 types of Kelvin links:
 - viscelastic
 - mechanorptive
Cupping of painted panels

hygroviscoelastic viewpoint

- Flying wood: Evidence of tension/compression set
 - Permanent curvature observed after a humidity cycle
 - Essentially unrelated to ring structure
 - Irreversibility originates from mechanosorptive deformation, either tensile or compressive
- But why should contraction dominate over extension?

![Diagram showing RH and curvature relationships](image)
Compression set and cupping of painted panels

Origin of a panel curvature: the compression set

- Evidence of compression set in T direction (Hoadley 1995)
 - (A) free swelling/shrinkage: reversible
 - (B) free shrinkage, no swelling: evidence of compression set
 - (C) fully clamped: higher crack risk

- Explanation of compression set by Hoadley (1995)
 - During humidification at 2.5% compression, elastic limit has been exceeded. Wood « plastifies » 2% at unloading
 - During drying, wood subject to 2% tension that exceeds the elastic rupture
Compression set and cupping of painted panels

Origin of a panel curvature

- Slower moisture uptake from the painted face
- Restrained swelling of the back face
- Compressive stress
- Compression set
- Gradient of compression set results in permanent cupping

In panel paintings:
- Asymmetry of moisture movements causes cupping
- Compression set on the back face causes *permanent* cupping
- Partial restraint by the frame & crossbars may cause wood cracking
Compression set and cupping of painted panels

‘quasi’ reversibility of compression set

- Cupido’s arrow by l'oue (1982)
 - two different pieces of wood, no gluing:
 only wood rheology involved
 - how did the arrow penetrate the heart?
Compression set and cupping of painted panels

‘quasi’ reversibility of compression set

- Radial compression at increasing levels:
 - In dry condition, large permanent strain after each unloading
 - In wet condition, ‘almost’ full recovery + damage are observed

→ changing mc ~ wet?

compression with lateral restraint after Liu et al. (1993b)
Compression set and cupping of painted panels

Why may wood not break in tension

- Yes, wood exceeds linear limit, but ‘plastifies’ (with some damage?) being softened by humidification

![Graph showing stress-strain relationship](image)

Hoadley (1995)

- Yes, during drying a deformation is temporarily blocked (~2%) but recovers a part of it through mechanosorption
 - (A) free swelling/shrinkage
 - (B) free shrinkage, no swelling:
 - (C) fully clamped: higher crack risk

→ Evidence of compression set by no crack occurrence

DRY → WET → DRY
Modelling of compression set

Experimental data

![Graph showing compression set data]

Experimental data

- **STRAIN (%)**
 - epsA%
 - epsB%
 - epsB_calc

- **STRESS (MPa)**
 - sigB Mpa
 - sigB_calc

- **STRESS (MPa)**
 - sigC Mpa
 - sigC_calc
Modelling of compression set
Experimental data

- Experimental data

- Stress MPa vs. Imposed Strain % (-\(\varepsilon_A\))

Data for sigB and sigC, with calculated values sigB_calc and sigC_calc plotted on graphs.
Equations of the rheological model

\[\varepsilon = \varepsilon^e + \varepsilon^h + \sum \varepsilon^v_i + \sum \varepsilon^ms_j + \varepsilon^p \]

- total strain:
 \[\varepsilon^e = J^e \sigma \]
- elastic strain:
 \[\frac{d\varepsilon^v_i}{dt} = \frac{(J^v_i \sigma - \varepsilon^v_i)}{\tau_i} \]
- viscoelastic strains:
 \[\frac{d\varepsilon^ms_j}{dh} = \frac{(J^ms_j \sigma - \varepsilon^ms_j)}{\mu_j} \]
- mechanosorptive strains:

Compliances dependency on mc:

\[\log J = A(h) + B(h) \log \tau + C(h) \log^2 \tau \]

\((J = J_e, J^v_i, J^ms_j) \)
Equations of the rheological model

- combined plasticity & damage
 - relative plastic stress: \(s = \frac{\sigma_p}{\sigma_y} \) \(sp = \min[\sigma_y; \sigma(t)] < 0 \)
 - plastic strain: \(\varepsilon^p = (1-\lambda) f(s) J^0.\sigma \)
 - compliance change: \(J = Z J^0 \) \((J = Je, J^i, J^{ms})\)
 - damage factor: \(Z = 1 + \lambda .f(s)/s \)
 - anelastic function \(f(s) = m(s -1)^{1+n} \)
Conclusion

• Accounting for post linear time-dependent phenomena is required to explain the permanent cupping of panel painting
 - hygromechanical couplings between moisture changes and stress (mechanosorptive effect)
 - permanent microbuckling (compression set)
 - as damage is probably involved, the analysis of the shape generation is required to predict correctly the present and future hygromechanical behaviour of the object

• Application to modelling of panels painting in progress (cf talk of J. Colmars tomorrow)
 - model validation through case studies
 - application to simulate ranges of situations
Research needs

• Need for better knowledge of material properties of aged/ancient wood
 - heat and mass transfer
 - expansion ratios
 - Viscoelastic, mechanosorptive behaviour
 - damage evidence?

• Need for improved & validated models for predictive simulation:
 - to be used for case studies, with adjustment of parameters
 - to support assessment & improvement of current practices

• Integrated approach of the wooden support and the paint layer?
Thank you