

	Modeling of Moisture Transfer					
Modeling of S	Surface Resistance					
consideration of changes in ambient atmosphere: boundary conditions of <i>Neumann</i> type $q_n = S \cdot \rho_0 \cdot (m_{ecm} - m_s)$						
• q _n :	moisture flux across the boundary [kg/(mm ² s)]					
• ρ ₀ :	density in absolute dry condition [kg/mm ³]					
• m _{ecm} :	equilibrium moisture content [-]					
• m _s :	moisture content at the surface					
• S:	surface emissivity coefficient subject to moisture content [mm/s]					
isas Institute for St	ructural Analysis 14					

				Hygro-mechanical Coupling		
Moisture-dependent Elastic Properties						
components of compliance tensor subject to moisture content						
1	$S_{11}(m)$	$S_{12}(m)$	$S_{13}(m)$	0	0	0]
$\underline{\underline{S}} = \underline{\underline{C}}^{-1} =$	$S_{21}(m)$	$S_{22}(m)$	$S_{23}(m)$	0	0	0
	$S_{31}(m)$	$S_{32}(m)$	$S_{33}(m)$	0	0	0
	0	0	0	$S_{44}(m)$	0	0
	0	0	0	0	$S_{55}(m)$	0
	0	0	0	0	0	$S_{66}(m)$
approximation of experimental results carried out by <i>Neuhaus</i> for spruce						
$S_{ij}(m) = a_{ij} \cdot sin(b_{ij} \cdot m + c_{ij}) + d_{ij}$						
$0.01 \le m \le 0.28$						
symmetry of elasticity tensor only partly validated by experimental results $\overline{S}_{ij}(m) = \frac{1}{2} \cdot (S_{ij}(m) + S_{ji}(m))$						
						Neuhaus [1981]
isos Institute for	Structural Ana	lysis				18

	Examples
Cantilever Beam	
 FE-model material 1: linear elastic anisotropic mechanics and anisotropic moisture 	
 material 2: multi-surface plasticity and anisotropic moisture 	
 steady-state simulation 	
loading	
constant surface loading	
• change of ambient atmosphere from $T_1=10$ °C, $RH_1=0.4$ to $T_2=28$ °C, $RH_2=0.7$	
1505 Institute for Structural Analysis	24

		Examples		
Swelli	ng Beam			
	linear elastic	ductile	ductile	
	3rd principal stress [N/mm ²]	3rd principal stress [N/mm ²]	plastified parts	
time	-14,5 -10 -5 0 5 9,5	-6 -4 -2 0 2 4 6 8		
30 min				
50 min				
iSDB Institute for Structural Analysis				

